Varying discrete Laguerre-Sobolev orthogonal polynomials: Asymptotic behavior and zeros
نویسندگان
چکیده
We consider a varying discrete Sobolev inner product involving the Laguerre weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and of their zeros. We are interested in Mehler–Heine type formulas because they describe the asymptotic differences between these Sobolev orthogonal polynomials and the classical Laguerre polynomials. Moreover, they give us an approximation of the zeros of the Sobolev polynomials in terms of the zeros of other special functions. We generalize some results appeared very recently in the literature for both the varying and non–varying cases.
منابع مشابه
Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic behavior between these Sobolev or...
متن کاملMonotonicity and Asymptotic of Zeros of Laguerre-sobolev-type Orthogonal Polynomials of Higher Order Derivatives
In this paper we analyze the location of zeros of polynomials orthogonal with respect to the inner product
متن کاملStrong and Plancherel-Rotach Asymptotics of Non-diagonal Laguerre-Sobolev Orthogonal Polynomials
when :>0. In this way, the measure which appears in the first integral is not positive on [0, ) for + # R" [&1, 0]. The aim of this paper is the study of analytic properties of the polynomials Qn . First we give an explicit representation for Qn using an algebraic relation between Sobolev and Laguerre polynomials together with a recursive relation for k n=(Qn , Qn)S . Then we consider analytic ...
متن کاملSobolev Spaces with Respect to Measures in Curves and Zeros of Sobolev Orthogonal Polynomials
In this paper we obtain some practical criteria to bound the multiplication operator in Sobolev spaces with respect to measures in curves. As a consequence of these results, we characterize the weighted Sobolev spaces with bounded multiplication operator, for a large class of weights. To have bounded multiplication operator has important consequences in Approximation Theory: it implies the unif...
متن کاملMonotonicity and Asymptotics of Zeros of Laguerre-sobolev-type Orthogonal Polynomials of Higher Order Derivatives
In this paper we analyze the location of the zeros of polynomials orthogonal with respect to the inner product
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 222 شماره
صفحات -
تاریخ انتشار 2013